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Analyzing the pupil response due to increased cognitive demand: An independent
component analysis study
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Pupillometry is used to indicate the relative extent of processing demands within or between tasks;
however, this analysis is complicated by the fact that the pupil also responds to low-level aspects of visual
input. First, we attempted to identify “principal” components that contribute to the pupil response by
computing a principal component analysis (PCA) and second, to reveal “hidden” sources within the pupil
response by calculating an independent component analysis (ICA). Pupil response data were collected while
subjects read, added or multiplied numbers. A set of 3 factors/components were identified as resembling the
individual pupil responses, but only one ICA component changed in concordance to the cognitive demand.
This component alone accounted for about 50% of the variance of the pupil response during the most
demanding task, i.e. the multiplication task. The highest impact of this factor was observed for 2000 to
300 ms after task onset. Even though we did not attempt to answer the question of the functional
background of the components 1 and 3, we speculated that component 2 might reflect the effort a subject
engages to perform a task with greater difficulty.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Pupillometry, the observation of the dilation of the eye's pupil, has
well-described potential to uncover the processing activity that
accompanies mental effort (Beatty and Brennis, 2000; Heitz et al.,
2008; Hupe et al., 2009; Steinhauer et al., 2000; Vo et al., 2008). It has
long been known that the extent of pupil dilation indicates the
relative extent of processing demands within a task frommoment-to-
moment and, moreover, between tasks (Beatty and Kahneman, 1966;
Heitz et al., 2008; Hess, 1972; Hess and Polt, 1964; Hess and Howell,
1988; Kahneman et al., 1969; Porter et al., 2007).

The main difficulty in detecting “cognitive-induced” pupillary
responses is that the pupil also responds to low-level aspects of visual
input (Goldwater, 1972; Porter et al., 2007), for example, changes in
luminance or spatial frequency or accommodation responses. Because
of the magnitude of the light reflex and induced pupil responses due to
accommodation, precautions must be taken to avoid a “masking” of the
small changes that are evoked by mental operations by responses
produced by optic reflexes. Moreover, for most specific task-conditions,
the degree to which the pupil response is reflex-based or cognitively
driven remains unknown.One solution for copingwith these difficulties
might be to identify each “hidden” source within the overall pupil
response and outline the one that selectively responds to the cognitive

demand. The current study aimed to describe hidden sources in the
overall pupil response—with a specific interest in revealing one
component that might react to variations in cognitive demand.

As described later in detail, we altered the cognitive demand by
changing anarithmetic task. Arithmetic tasks have beenpreviously used
to vary overall pupil responses (see, for example, Matthews et al.
(1991)) or the pupil–light reflex (see for example, Steinhauer et al.
(2000)); however, to the authors' knowledge, a component analysis
(i.e., “hidden” source identifications) of pupil responsedata hasnot been
previously published. We found examples for other tasks. For example,
in a recent paper, Kuchinke et al. (2007) used a principle component
analysis (PCA) to identify components in the pupillary responses in a
lexical decision task and replicated the common structure of three
temporal components (GranholmandSteinhauer, 2004;Nuthmannand
van der Meer, 2005). However, one assumption of PCA is that
component sources are spatially orthogonal to each other and there is
a priori no reason to think that this is the case for pupillary components.

Regarding the latter aspect of PCA, we questioned whether it
might have an impact on pupil response analysis. Therefore, we first
applied a PCA to our pupil response data in order to compare our data
to previously established implicit structures. In addition, we further
analyzed our data by applying an independent component analysis
(ICA). This approach takes advantage of the fact that underlying input
processes have some inherent response-to-response variability, and
this variability can be used to identify process (i.e., component)
contributions to the total response—in our case, the pupil response.
Generally, the aim of an ICA is to minimize the statistical dependence
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between the underlying components, which might not be orthogonal
to each other. In terms of the pupil response, this might be a direct
advantage: the regulation of the pupil size is a result of the complex
interrelationship of the parasympathetic and the sympathetic path-
ways (Loewenfeld, 1958, 1999; Lowenstein and Loewenstein, 1969)
and, as mentioned above, the pupil responds to low-level aspects of
the visual input as well as to higher-level activities such as mental
effort (see, for example, Goldwater (1972) or Heitz et al. (2008)). All
of these processes interact and there is no physiological reason to
expect that these processes work on orthogonal dimensions, as is
assumed for PCA. Thus, for physiological or biological systems, the ICA
has assumptions that are more reasonable. In this context, ICA has
been utilized in numerous applications in biomedical studies
including, for example, the decomposition of the vergence step
response (Semmlow and Yuan, 2002), and, more prominent, the
analysis of the electroencephalogram (Vigario et al., 2000). In the EEG
literature (in which the same questions of source separation arise),
ICA is generally preferred because of its strength in segregating the
EEG sources as non-orthogonal (oblique) factors (Jung et al., 1998;
Jung et al., 2000). Besides noise-reduction and artifact control (see, for
example, Jung et al. (1998)), the ICA is used to identify (see, for
example, Hoffmann and Falkenstein (in press)) or localize (see, for
example, Lei et al. (in press) or Eichele et al. (2009)) different
functional processes reflected in EEG signals. Further, the ICA has been
utilized in evaluations of the electrocardiogram (ECG, see, for
example, Chawala et al. (2008)) or the analysis of photoplethysmo-
graphy (see, for example, Abe et al. (2008)). It should be noted that
signals that have been decomposed with an ICA typically include
multiple detectors (for example, multiple electrodes for the EEG or
ECG), while the pupil has only a single output channel. In contrast to
the use of the ICA in multi-channel applications, the ICA had been
used successfully by Semmlow and Yuan (2002) to perform a “dry
dissection” of the vergence step response: the authors used the single
vergence signal from the eyemovement recordings and extracted two
ICA components which resembled the sustained and transient
component of the vergence step response, respectively (see also:
Semmlow et al. (2007)). This example encouraged the present use of
the ICA for a single data channel, i.e. the pupil response measure.

In sum, we accepted that the pupil response is driven by different
reflexes and cognitive aspects. In order to account for all hidden
sources within the pupil response, additional experimentations that
vary known low-level aspects of the visual input as well as cognitive
demand are needed. For our purpose, we analyzed pupil responses
that were measured during a simple arithmetic task, while perfor-
mance measures ensured cognitive demand variations. Furthermore,
the visual presentation was the same for all conditions. Nevertheless,
a relatively early component within the overall pupil response is
generally expected to reflect reflex aspects of the pupil response,
which are driven by changes in the visual presentation when, for
example, trials change from one to another (Kuchinke et al., 2007). A
cognitive-induced component of the pupil response was expected to
influence the overall pupil response during the course of the task,
while a later component might reflect response or post-processing
monitoring (Kuchinke et al., 2007; Nuthmann and van der Meer,
2005). Nevertheless, by analyzing the present pupil responses, we
were able to describe general experiences of ICA results for a simple
arithmetic task and found qualitative hints of a “hidden” source for
cognitive-induced component of the overall pupil response.

2. Methods

2.1. Participants

We tested 10 male subjects (average age±SD: 23±3) with a
minimal visual acuity without correction of 1 (in decimal units) in the
measured right eye. Myopic, hypermetropic, and astigmatic refractive

errors did not exceed the amount of 0.5 D. Each subject provided
informed consent prior to the experiments; the research followed the
tenets of the Declaration of Helsinki.

2.2. Task

Subjects were asked to read, add ormultiply a two-digit and a one-
digit number; number combinations were selected in order to avoid
trivial combinations such as “20 1”. All numbers changed from trial to
trial, so that the change in visual input was approximately equivalent
for each trial. The arrangement of the numbers is shown in Fig. 1.When
reading the numbers, subjects had to react as fast as possible to an “L”
or “R”with the left or right mouse button, respectively. During adding
and multiplying periods, the presented result could be correct or
incorrect by ±1 or±10 and subjects were asked to indicate the result
as correct or false, again as fast as possible. Each number combination
(i.e., one trial) was presented for 5 s and number presentations
changed without a time gap from one frame to the next. A complete
block of 32 trials lasted 160 s and the tasks (reading, adding or
multiplying) were presented in separate blocks. The sequence of these
blocks (reading, adding or multiplying) was counterbalanced across
subjects.

We measured pupil diameter, reaction time and errors during task
processing.

2.3. Apparatus and stimuli

The targets were presented monocularly on a LCD screen (thin-
film transistor (TFT)-LCD, Fujitsu Siemens) as black onwhite numbers
with a mean background luminance of 30 cd/m². Each number
subtended 0.29 deg×0.37 deg (width×height) at a viewing distance
of 5 D (20 cm). The surrounding room lighting was adjusted
individually in order to set the initial pupil size at an individual
intermediate size to avoid ceiling effects. The resulting room lighting
varied between 2 and 15 lx across subjects. Pupil size was measured
dynamically (25 Hz) using a remote, automatic eccentric infrared
photorefractor, the PowerRef II (PlusoptiX) (Allen et al., 2003;
Wolffsohn et al., 2002), which is specified by the manufacturer to
measure pupil size with a resolution of 0.1 mm. The camera was
placed in line with the right eye and a chin and forehead rest was
used. During data screening, blink artifacts were removed from the
records. A blinkwas identifiedwhen the pupil signal was below 60% of
the median size for at least 50 ms. Blinks separated by less than
100 ms were aggregated to a single blink. In addition, all trials were
visually inspected for undetected artifacts (approximately 5% of the
complete data set). If there were three or more blinks within a trial,
this trial was excluded from further analysis (approximately 15% of
the complete data set). Blink periods were then linearly interpolated.

2.4. Pupil data preparation

In order to consider pure pupil diameter changes, we subtracted
the average pupil size from each trial; thus, pupil size changes were
independent of the initial pupil size and comparable between
subjects. Additionally, we selected a response (n) by considering the
reaction time in the single task before (n−1). When the reaction time

Fig. 1. The task layout for reading (a), adding (b) and multiplying periods (c), for
comparison.
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of the task n−1 deviated from the average by half the SD or when the
subject failed to provide an answer, the response (n) was excluded
from analysis (approximately 18% of the trials for the multiplication
task). This procedure was implemented to avoid the enduring
processing of task n−1 while task n was presented.

For our PCA and general ICA analysis, we averaged the single trials
(5 s) across repetitions within one subject for each task. The analyses
run on these individual averages (across subjects and tasks) were
considered to describe a common structure within the average pupil
responses. Then, we calculated single ICAs (one for each subject) on a
trial-by-trial basis to reflect individual structures before comparing
the influence of specific components on the overall average pupil
response.

2.5. Principal component analysis (PCA)

A principal component analysis transforms correlated variables
into uncorrelated variables, the so-called principal components. The
first principal component accounts for the greatest amount of the
variability in the data, and each succeeding component accounts for as
much of the remaining variability as possible. PCA is theoretically the
optimum transformation for data in least square terms. For our
analysis, two criteria were employed to extract the factors: an eigen-
value greater than 1 (Kaiser criterion) and a significant contribution to
the accounted variance. We used the prcomp of the statistical package
R-Development-Core-Team (2008) for analysis of our data.

2.6. Independent component analysis (ICA)

An independent component analysis is another analytical method
that isolates individual components from a mixture of signals while
the mixing system is unknown. It attempts to explain how the non-
Gaussian and mutually independent latent components are mixed to
generate the observed signals by maximizing the statistical indepen-
dence of the estimated components. The basic principles behind ICA
are described, for example, by Hyvärinen et al. (2001). The number of
components to be extracted is predefined by the number of PCA
components. We used the fastICA algorithm of the statistical package
R-Development-Core-Team (2008).

The ICA is based on a generative model; it attempts to explain how
the “hidden sources” (i.e., the components) are mixed to create the
observed signals assuming a linear mixing model (Comon, 1994). A
comparable simple linear equation represents this model:

x = As + noise

where s is the number of vectors containing signals from the “hidden
sources” and x are the vectors containing the observable signals, that
is, the components after they have been linearly mixed. These are the
actual pupil responses that we measured. A is a matrix that describes
how the signals have been mixed together. The noise vector
represents disturbances in the form of additive noise independent
of the “hidden sources”. The basic assumption of the ICA is that the
measured signal (the pupil response: x) is a simple linear combination
of the “hidden source” signals (s) plus noise. In matrix terms, the
mixing reflected by A can be interpreted as a rotation and a scaling of
the “hidden source” signals (s). There should be one rotation and
scaling that when applied to the observable signal (x), recovers the
“hidden source” signals (s). This recovery operation is reflected by the
unmixing matrix (U)—that is, the inverse of A. In accordance with the
fact that mixtures of independent signals have distributions that are
closer to Gaussians than unmixed signals, ICA algorithms rotate and
scale the data set using an optimization procedure to search for a
result that is the least Gaussian (Hyvärinen et al., 2001). Using the
fastICA algorithm of the statistical package R-Development-Core-
Team (2008), we extracted the components simultaneously and

approximation to neg-entropy was used, which is more robust than
kurtosis-based measures (Comon, 1994; Hyvärinen et al., 2001).

3. Results

3.1. Reaction time, errors and average pupil size

Before running the PCA and ICA analyses, we determined whether
our experimentalmanipulation (i.e., the changeof the task from reading
and adding to multiplying the numbers) had an effect on average
reaction time, errors and pupil size. These average changes are typically
expected if a change in cognitive demand is imposed by the different
task (for pupil size changes, see, for example, Bradshaw (1967),
Goldwater (1972), Hess and Polt (1964), Matthews et al. (1991)).
Average (±SD) reaction time increased from 1772ms (±790) for
reading up to 2145ms (±722) for adding and to 3234 ms (±680) for
multiplying the numbers (F(2,27)=8.54, pb0.01; effect size: f=0.90).
The average error was low (b1%) for reading and increased from 2%
(±4) for adding to 30% (±16) for multiplying the numbers (F(2,27)=
28.65, pb0.01; effect size: f=1.46). Additionally, average pupil sizewas
4.7 mm (±0.8) for reading and it increased from 4.8 mm (±0.9) for
adding to 5.9 mm (±0.5) for multiplying (F(2,27)=7.26, pb0.01; effect
size: f=0.73). For reaction times, the difference between reading and
adding the numbers was significant (t9=−2.82; p=0.02; effect size:
d=0.49), while for the average error and average pupil size, no change
was observed (t9=−1.0; p=0.34 and t9=−1.84; p=0.09, respec-
tively). For all three parameters, the difference between reading/adding
and multiplying the numbers was statistically significant, as indicated
by the ANOVA above (i.e., reaction time (t9=−2.82; p=0.02; effect
size: d=0.49), errors (t9=−2.82; p=0.02; effect size: d=1.83) and
pupil size (t9=−2.82; p=0.02; effect size: d=1.77) differed for
reading and multiplying the numbers; in addition, reaction time (t9=
−2.82; p=0.02; effect size: d=1.55), errors (t9=−2.82; p=0.02;
effect size: d=1.84) and pupil size (t9=−2.82; p=0.02; effect size:
d=1.24) significantly differed for adding and multiplying the numb-
ers). The average pupil responses for the three tasks are shown in Fig. 2.

We calculated separate t-tests for each sampling point in order to
compare the average pupil dilation for each task. As expected from
the average data above, the pupil response for the reading and adding
task only statistically differed for a short period of time, starting
approximately 2440 ms after target onset (t9=−1.76; p=0.04;
effect size: d=0.52). Reading andmultiplying the presented numbers

Fig. 2. Average pupil responses during the reading task (solid line), the adding task
(broken line) and the multiplication task (dotted line).
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began to significantly differ after 1160 ms (t9=−2.45; p=0.02;
effect size: d=1.15), while adding and multiplying began to differ
1360 ms after task onset (t9=−2.65; p=0.02; effect size: d=1.17;
see Fig. 2 for comparison).

3.2. PCA results

Computing the PCA, four factors (or components) with eigenva-
lues over one were identified. Comparable to Kuchinke et al. (2007),
visual inspection of the screeplot revealed that only 3 factors differed
from the others; these 3 factors accounted for 81.3% of the overall
variance. In a second PCA, with a limiting factor number of 3, the
accounted variances were 44% for the first factor, 31.7% for the second
factor and 5.6% for the third factor.We plotted the factor loadings after
a varimax rotation, where the number of a factor represents its order
along the timeline (see Fig. 3). (Note here that we plotted the
complete curves of factor loadings with horizontal lines indicating the
boarders of factor loadings, which are considered to be “meaningful”.
If the interested reader attempts to compare our results with, for
example, those of Kuchinke et al. (2007), bear in mind that they only
plotted the range from 0.4 to 1. “Cutting” our plot at the border of 0.4
would provide a comparable figure.).

Calculating factor scores (according to the factor loadings for each
subject and task) and running both an ANOVA and a Friedman Two-
Way-ANOVA (Χ (df); non-parametric test statistics because of a small
N) showed no difference between tasks and components (all FbF(crit);
ΧbΧ(crit)). Thus, the contribution of each component did not differ
between the tasks. Nevertheless, the previously reported three-factor
structure was evident within our data; therefore, we calculated an ICA
on the average response data, assuming three components.

3.3. ICA results

Fig. 4 shows a plot of the corresponding 3 components identified
by the fastICA algorithm. The fastICA provided 3 components for the
average pupil response (matrix S) and a mixing matrix (A);
multiplying A×S would restore the original data set.

The three components were again named by the order of their
peak, e.g., component 1 showed a peak at around 1.5 s after task onset,

component 2 showed a plateau-like peak from 2 s to 3 s after task
onset and component 3 showed a late peak around 4 s (i.e., 1 s before
the end of the task).

To disentangle the input of each component into the overall pupil
response, we selected each single component (column in matrix S)
and multiplied it with the mixing matrix A. As a result, the average
input of each component into the pupil response for each task (over
time) was plotted (see Fig. 5).

Due to to the largely different slopes of the three components, we
did not compare single peak amplitudes across tasks or components.

In order to evaluate the significance of each extracted ICA
component, we calculated the percentage of clarified variance (i.e., the
variance that is due to each component within the average pupil
response) (see Acknowledgements). First, we calculated the sum of
squares for the average pupil data for each task (SSraw). Then, as
mentioned above, we reprojected each component (as extracted by the
ICA) separately into thepupil response for each task (see Fig. 5). Further,
we calculated the difference between the reprojected component and
the average pupil response for each task. Next, we extracted the sum of
square for this difference (SSdiff). By calculating 100 (1−SSdiff /SSraw),
we described the reduction of variance in the pupil response when the
component was subtracted from the average response. In other words,
the larger the resulting percentage of the component, the more the
component contributes to the variance within the average pupil
response. Table 1 shows the corresponding percentages of variance.
As expected from Fig. 5, component 2 accounted for the largest amount
of the variance in the pupil response during the multiplication task.

3.4. Replicating the average ICA component structure for each subject

The ICA provided a component structure based on the average
pupil response, excluding the individual trial-by-trial variation for
each subject. Taking this into account, we ran a fastICA for each subject
and restored the individual influence of each component for the three
tasks before averaging. Thus, running 10 fastICAs (one for each
subject) provided three components, which were categorized (by
inspection of peak appearance and overall slope) to resemble the
corresponding components 1 to 3. Considering the influence of each
component during the different tasks, we multiplied each single
(individual) component (column in S) with the (individual) mixing

Fig. 3. PCA analysis identified 3 factors, which are named by the order of their peak, e.g.,
factor 1 (solid line including dots), factor 2 (broken line) and factor 3 (dotted line). Note
that for illustration purposes, we fitted a smooth spline to the “raw” factor loadings of
the PCA algorithm. Horizontal lines at −0.4 and 0.4 indicate the border of factor
loadings, which are considered to be “meaningful”.

Fig. 4. FastICA analysis identified 3 components, which are named by the order of their
peak, e.g., component 1 (solid line including dots), component 2 (broken line) and
component 3 (dotted line). Note that for illustration purposes, we fitted a smooth spline
to the “raw” component outcome of the fastICA algorithm.
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matrix A. This calculation resulted in a data matrix for each subject
with columns that reflected the considered component (1 to 3)
reprojected into the raw data and varying over time; different tasks
were grouped into different column sections of this matrix. Averaging
these column sections for a specific task provided the average in-
dividual influence of the considered component for the specific
subject (comparable to those shown in Fig. 5, but for a single subject).

3.5. Comparing the “energy” of each component

In order to compare these single, individual results across subjects,
tasks and components, we calculated an energy (Johannsen, 1976) for
each individual component observation as follows:

Ei = 1= T ⁎ 1∑
T cið Þ2

with

Ei the resulting energy (i reflected the components 1 to 3)
T the sampling points (125 for 5 s with a sampling rate of 25 Hz)
ci the component value (arbitrary units).

(Note: The resulting energy value was quite small because of the
small millimeter-range of pupil changes; thus, we multiplied it by
1000 to ease the graphical and numerical illustration.).

Next, the resulting energy scores were analyzed by running an
ANOVA and a Friedman Two-Way-ANOVA (Χ (df); non-parametric
test statistics because of a smallN). As expected from Fig. 5, the second
component showed the largest increase in energy by changing the
task from adding to multiplying relative to the other two components
(F(2,27)=3.55, pb0.05; effect size: f=0.51; Χ(2)=7.2, pb0.05). The
same comparison for the other two components remained non-
significant (for both: Fb1; XbΧ(crit)).

3.6. Comparing the “energy” of component 2 and the error rate

In order to further explore our data, we selected the error rate as a
basis for exploration: change in the error rate was strongest due to the
task and between subjects, respectively. We speculated that if the
components of the pupil response reflect processes induced by the
task, one of the components might co-vary with this strong change in
error rate. We explored the between-subjects aspect of the increase in
error rate for the multiplying task, which was the most demanding
task in our experiment and reflected the largest effects. Thus, we used
a cluster analysis (statistical package R: hclust including Ward's
method for hierarchical clustering) to divide our sample of 10 people
into 3 groups of different error rates: low (N=3), intermediate
(N=2) and high (N=5) (see Fig. 6a).

Grouping the entire data set accordingly revealed a systematic
pattern: the average increase in pupil diameter was largest for high
error rates; subjects with intermediate and low error rates did not

Table 1
Reduction of variance (%) in the average pupil response when the influence of a single
component (1, 2 or 3) was subtracted. Note that the sum for each task might be less
than 100%; the ICA components are not orthogonal to each other.

Component

C1 C2 C3

Task Reading 7.1 9.3 65.7
Adding 39.4 11.3 24.2
Multiplying 0.7 51.7 0.9

Fig. 5. After multiplying the single components with the mixing matrix A, the influence
of each component for each task was plotted. Each component (1 to 3 and a to c,
respectively) is plotted over time (in sampling points); the solid line reflects the
reading task, the broken line the adding task and the dotted line the multiplying task.
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differ. Additionally, the larger the increase in error, the larger is the
increase in the energy in component 2 (see Fig. 6d). While components
1 and 3 showed inconsistent patterns, the gradual increase of errors is
well reflected by component 2. The average pupil diameter failed to
indicate differences between low and intermediate error rates.

4. Discussion

Even though pupillometry is used to indicate the relative extent of
processing demands within a task and between tasks (Beatty and
Kahneman, 1966;Heitz et al., 2008;Hess, 1972;Hess andPolt, 1964;Hess
and Howell, 1988; Kahneman et al., 1969; Porter et al., 2007; Vo et al.,
2008), the difficulty in detecting “cognitive-induced”pupillary responses
remains that the pupil also responds to low-level aspects of visual
input. We attempted to identify a “hidden” source of cognitive impact
within the overall pupil response by calculating an ICA for multiple
pupil response data collected while subjects read, added or multiplied
numbers. In detail, we aimed to determine whether one component
might be selective or sensitive to the variation of the cognitive demand.

First, a set of 3 components were extracted by a PCA run prior to
the ICA. Running a PCA first was important in order to define the basic
number of components for our ICA analysis and to explore whether
our data resembled commonly described factor structures for the
overall pupil response. The results of the PCA were comparable to
those reported previously (see for example, Kuchinke et al. (2007)).
We identified 3 factors (or components), one primarily loaded at the
beginning of the task and, therefore, may be correlated to presenta-
tion changes at task onset; another factor loaded at the end of the task,
eventually monitoring the motorical response or post-processing
stages (see, for example, Nuthmann & van der Meer (2005)). Finally,

one factor loaded intermediate to the task, eventually reflecting
response preparation (Kuchinke et al., 2007) or cognitive demand. For
the latter speculation, we would have expected that this factor would
have changed with tasks (i.e., to co-vary with reaction times or error
rates accordingly); however, in contrast to previous reports for other
tasks, these changes did not occur in our data. Thismight be due to the
small sample size. Nevertheless, all factors showed slopes comparable
to previous reports, even though the percentage of accounted
variance and the factor loadings were a bit smaller for our sample.
Regardless of the missing effect due to cognitive demand for the PCA
factors, the PCA confirmed a three-component structure within our
data. Thus, we calculated an ICA and, first, described the three
extracted components across tasks: in parallel to the PCA factors, the
first component showed a peak relatively early in respect to the task,
whereas the third component showed a peak near the end of the task.
Additionally, the intermediate component, the second component,
showed a plateau-like peak between 2 and 3 s (on average), which
resembled the average range of the reaction times for the three tasks.
Similar to the PCA components, we speculated that this component
was at least related to response preparation. By visual inspection, the
figure of this component (reprojected into the raw data) showed the
largest change in amplitude due to the task. Furthermore, we showed
that this second component accounted for approximately 50% of the
variance within the pupil response for the multiplying task, which
was the most demanding task (significantly more errors, longer
reaction times and larger pupil sizes) within our experimental design.

Before conducting our study, we speculated about the theoretical
differences between PCA and ICA results in terms of pupil responses.
As stated in the introduction, the ICA is based on more reasonable
assumptions for physiological or biological systems and has been

Fig. 6. The sample of 10 subjects was divided according to the average error rate (low, intermediate, and high). Further, we calculated the change in (a) error rate (%) and (b) pupil
diameter (mm)when changing the task from reading tomultiplying the numbers. Additionally, the changes in energy of the components are shown in (c) for component 1 (arbitrary
units), (d) for component 2 (arbitrary units) and (e) for component 3 (arbitrary units).
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previously utilized in numerous applications in biomedical studies
(Abe et al., 2008; Chawala et al., 2008; Hoffmann and Falkenstein, in
press; Lei et al., in press; Semmlow and Yuan, 2002; Vigario et al.,
2000). As for the vergence step response (Semmlow et al., 2007;
Semmlow and Yuan, 2002), we used an ICA to describe “hidden”
components within a single data channel, i.e. the pupil response. In
this context, our study is a first description of ICA components for
pupil responses due to cognitive demands.

In order to further compare the extracted ICA components across
tasks and subjects, we calculated ICAs for each subject and replica-
tions of the structure were obtained for each individual subject. Then,
we calculated an energy value for each trial. This energy value took
into account that the three components differed in slope and that a
single peak amplitude might underestimate the component, which
might have been especially true for component 1 (which had a more
periodic curve). As expected from the visual inspection of the
component influences co-varying with the task, the second compo-
nent changed significantly when the task changed from reading/
adding to multiplying the presented numbers.

Moreover, in order to understand the reflected process contribut-
ing to this change, the closest relationship was described to
correspond to the error rate: while changing the task from adding
tomultiplying, the component's increase in contribution to the overall
pupil response was largest in the subgroup of subjects with largest
error rates and lowest in the subgroup with the best performance.
Pupil data and behavioral data are often described as two sides of the
information processing: reaction times and error rates reflect speed
and accuracy while pupil responses reflect a measure of the cognitive
resources required by the task (Kuchinke et al., 2007; Nuthmann and
van der Meer, 2005). In this context, even though we do not attempt
to answer the question of the functional background of the 2 other
components (components 1 and 3), we speculated that component 2
might reflect the effort (or resource) a subject is engaging to perform
a task with greater difficulty. These supposed efforts reached a
maximum between 2000 and 3500 ms after target onset. However, it
is important to note that these first speculations are purely descriptive
in nature and were based on small sample sizes.

In general, the sample size of 10 subjects might limit the statistical
power of the analyses and the generalizability of the presented results.
The lack of statistical power may account for the lack of significant
effects regarding the PCA analysis, while for the ICA analysis, the
coherence of the component structure (i.e., the replications of the ICA
structure for each individual subject) is evident, as mentioned above.

In sum, while varying the cognitive demand of simple arithmetic
tasks without changing low-level aspects, only one component
identified by an Independent component analysis (ICA) changed in
parallel to the changes in cognitive demand. Our analysis provided a
general description of this ICA component and we speculated about a
connection to response preparation or engaging additional effort.
Further research might show the details of the underlying processes.
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