Behavior Research Methods, Instruments, & Computers
1995, 27 (1), 76-82

Program Abstracts/Algorithms

MICELAB: Spatial processing of mouse
movement in Turbo Pascal

THIERRY BACCINO
Université de Nice Sophia-Antipolis, Nice, France

and

ALAN KENNEDY
University of Dundee, Dundee, Scotland

Pointing tasks with a mouse are very useful in psycho-
logical experiments concerned with a subject’s ability to
track a visual object or to move to a target location (e.g.,
to find a word in text). Such tasks are quite easily per-
JSormed by subjects, and numerous variables may be ob-
tained from the mouse movement. In this article we de-
scribe a set of Turbo Pascal 6.0 units and a program
running on the IBM PC family that show how data (x,y
coordinates) recorded from a mouse movement can be an-
alyzed to give dispersion, direction, and distance of the
movement.

In an earlier paper, Crosbie (1990) showed that the
Microsoft mouse available with any microcomputer of
the IBM family could be a sophisticated multipurpose re-
sponse device in psychological experiments. Program-
ming the mouse with the DOS Interrupt 33H, which pro-
vides several functions, appears very convenient and
avoids inappropriate keyboard responses while reducing
the delay until a keypress is detected by a program. How-
ever, if the mouse is used in reaction time studies, such
as that in Crosbie’s article, certain precautions should be
taken to improve timing accuracy, such as preventing any
mouse movement (Segalowitz & Graves, 1990) and cor-
recting time registration (Beringer, 1992).

Curiously, Crosbie and others do not describe how to
get a spatial description of the mouse movement when-
ever it is used to track a visual object or to find a word
position previously stored in memory. Typically, in such
an experiment the subject’s task is to move the mouse
cursor to a target location, given a certain starting point
(e.g., pointing task), as is shown in Figure 1.

Numerous applications of a pointing task with a
mouse are possible in cognitive psychology, psycholin-
guistics, and human factors (e.g., work on spatial mem-
ory, visual search, word identification, text reading, or

Requests for reprints should be sent to the first author at Université
de Nice Sophia-Antipolis, Laboratoire de Psychologie Expérimentale,
BP 209. 98, Bd E.Herriot, F-06204 Nice Cedex 3, France (e-mail:
lapex@frmop22.cnus.fr).

Copyright 1995 Psychonomic Society, Inc.

76

information displays on screen). We describe several
spatial variables that might be extracted from a pointing
task, thereby increasing the set of variables that can be
recorded using the mouse. Variables such as dispersion,
direction, and distance of the movement are very useful
in identifying more precisely the underlying cognitive
processes involved in reading or in accessing spatial
memory. For example, we have shown that mouse move-
ment is sensitive to the spatial memory for words in text
involving different syntactic or referential representa-
tions (Baccino,1991; Baccino, 1994; Baccino & Pynte,
1994; Baccino, Pynte, & Kennedy, 1990). Even a sub-
liminal effect, such as the refresh rate of VDU displays,
appears to disrupt the mouse trajectory (Kennedy &
Baccino, 1993). In the present article we describe a set
of Turbo Pascal (Version 6.0) routines (called MICE-
LAB) to be included in the main program (MouseTst)
that illustrates how spatial data from mouse movement
can be analyzed for experimental purposes. MICELAB
programs may be used to analyze any mouse or trackball
movements and may be included in your own program or
used via the MouseTst software.

TURBO PASCAL UNITS

MICELAB Unit

The unit provides a list of procedures and functions
involved in computing the spatial processing of mouse
movement during a pointing task. The movement is
recorded in an array of integers storing x and y coordi-
nates of the mouse at a given time. These routines are ex-
plained below, according to the three spatial variables
studied: trajectory dispersion, trajectory distance, and
pointing accuracy. Trajectory dispersion indicates the
degree with which the mouse deviates from the optimal
trajectory (e.g., straight line). Trajectory distance gives
the total distance of the movement. Both dispersion and
distance account for uncertainty or error made by a sub-
ject during performance of the task. Pointing accuracy
reveals the direction taken by the movement, indexing
the motor program elaborated.

Trajectory Dispersion Algorithm

The dispersion of the mouse trajectory is calculated as
the sum of the areas of the polygons whose boundaries
include the line created by the mouse and the line of the
optimal trajectory (i.e., from starting point to clicking
point), as is shown in Figure 2.

Since the mouse trajectory includes irregular loops or
vertical reversals that cut the optimal line, polygons of



SPATTAL PROCESSING WITH A MOUSE

The farmyard was bathed in warm sunshine

A cat drowsily stretched out under some steps
Mary gently played with the animal

It‘,’hecane more and more annoyed

71

Mouse

Tra jectory

Etarting Point

Figure 1. Schematic diagram showing key elements of the display during a pointing task in which the subject moves
the cursor from a starting point to a designated word. The dashed line corresponds to mouse trajectory.

this type are often complexes (because of the lack of
convexity). It is necessary to compute the area in multi-
ple stages, depending on whether the optimal trajectory
has been crossed. The intersection point is then taken as
a pivot vertex in order to calculate the next polygon. The
area is computed by the Area function, which calls, re-
spectively, the Intersegt procedure and the PolygonArea
function, described below. The Intersegt routine tests
whether an intersection occurs between each line seg-
ment (from Point I to Point [+ 1 of the coordinates array)
and the optimal trajectory and, if it does, finds their
point of intersection. If an intersection is found, the area
of the polygon is calculated by calling the PolygonArea
function from Point I to Point I+ 1. The last vertex of the
polygon in this case is the intersection point with the opti-
mal line. The same procedure is called for the following
points until the end of the movement (clicking point).
The dispersion is the sum of all polygon areas. The Area
function requires the first and the last coordinate of
the array as inputs and the total number of points
recorded. The Intersegt procedure and PolygonArea
function are described more precisely in the following
text.

Intersegt procedure. Given two line segments (end-
points a and b, ¢ and d), the procedure determines
whether they intersect and, if they do, finds their point

of intersection. The method first finds where the “par-
ent” lines (P1, P2) of each line segment intersect (the
parent line is the infinite line, of which the segment is a
part) and then checks whether the intersection is within
both line segments, as is shown in Figure 3. In mouse
movement terms, the two line segments are drawn (1) from
Point I to Point [+1, and (2) from starting point to click-
ing point.

For the parent lines to intersect, we need to solve the
equation

D = (b —a)d, —c) = (b, —a)d, —c),

where a and b represent the endpoints of Line Seg-
ment 1, and ¢ and d denote the endpoints of Line Seg-
ment 2. If D is equal to zero, the parent lines are paral-
lel. If D is not equal to zero, t, and u, are computed,
where

fh = (¢, —a)d, = ¢,) = (¢, —a,)d; —¢)/D

u, = a, + (b, —a)ty —c/d, —c,).

If £ lies outside the interval [0,1], there will be no inter-
section; the segment does not reach the other line. Other-
wise, an intersection may exist, and so we compute .
If ug lies between 0 and 1, the segments will intersect



78 BACCINO AND KENNEDY

Clicking Point

Area = A

Optinal

Tra,jectory

Starting Point

Figure 2. Analysis of the mouse movement from Figure 1. The movement is decomposed into mul-
tiple polygons (A1,A2,A3) whose boundaries include the mouse line and the line of the optimal

trajectory.

and the point of intersection (/y, ;) is found according to
the equations

Ix ay + (bx - ax) tO

I, =a, +(, —a)i,

If D is equal to zero, it means the slopes are equal and
the parent lines are parallel. But the segments might still
overlap; we test this by the equation

th = (bx - ax)(cy - ay) - (by _ay)(cx _ax)'
If Lhs (left-hand side) is sufficiently close to zero (such
as 10—5—an arbitrary value in the routine), the parent
lines coincide and we find the two values 7. and ¢4, where

i, = (¢, —a)/(b, —ay)
td = (dx - ax)/ (bx - ax)'

There is an overlap, unless both 7. and ¢4 are less than 0
or greater than 1.

PolygonArea function. The area is computed by de-
composing the polygon into a collection of triangles and
summing the areas of these triangles, as is shown in Fig-
ure 4. The area of the triangle is easily found by calcu-
lating the cross product (1/2 x; X y;), where

X Xy =y, — %0 Yoy —xy) Ty X))

It is necessary to keep the sign of the area in order to
solve polygons that are not convex. The area of the poly-
gon is determined by summing all the positive and neg-
ative triangle areas. Likewise, the overall area of the
mouse trajectory is given by summing the absolute val-
ues of every polygon area.

Algorithmically, the polygon area (Area function) re-
quires two steps:

1. Find the last vertex of the polygon by calling Inter-
segt (if no intersection is found, the last vertex is the
clicking point).

2. Calculate the area of the polygon by summing the
signed areas of the successive triangles (using the



‘Parent” Ling

Fi
P2
kb
Sgl d
k-9
/ sgz2
| o

SPATTAL PROCESSING WITH A MOUSE

Pivot vertex

Io
S

Figure 3. Representation of the “parent” line notion and Intersegt algorithm. The intersection between each line
segment (from Point I to I+1) and the optimal line (SC) is tested until the end of the movement.

Polygon Area

Figure 4. Representation of the PolygonArea algorithm. Each polygon area is found by decomposing it
into a series of triangles and summing the signed areas (SA ;) of these triangles (e.g., SA1+SA; + SA3+SAy).

79



80 BACCINO AND KENNEDY

Clicking Point

ml

+ Target point

m?2

T = ArcTan

Starting Point

Figure 5. Angle of the pointing (clicking point, starting point, target point) corresponds to the angle between

two lines given from their slopes (71, m ).

CrossProduct function). Specifically, for the ith triangle,
the signed area, SA4;, is

SA; = 12a xa; +1,
where a; and a;+ 1 represent the vectors of two sides of

the triangle and the area of the polygon is:

area =| % S4;

i=1

m=2 ‘

The area is given in square pixels, and the dispersion of
the movement is equal to the absolute values of all poly-
gon areas.

Total Distance of the Trajectory

The total distance is the sum of the algebraic distances
from each point (i) to the next (i+1). The algebraic dis-
tance (Dist_Alg function) between two points is given
by the equation

d =X, = X))2 +(Y, =1,)2.

The Distance function requires the first and the last
point (in pixels) from which the distance will be calcu-
lated. Since the system uses a VGA resolution, pixels
have the same vertical and horizontal dimensions (i.e., a
diameter of 0.28 mm). This precaution (same dimen-

sions in width and height for a pixel) is meaningful
whenever distances are used for comparative purposes.
Similarly, good resolution allows for the detection of
very small mouse movement, such as tremor.

Pointing Accuracy Algorithm

The pointing accuracy is calculated by the angle
drawn between the target point and the clicking point
from the starting point, as is shown in Figure 5. This
variable, which gives the direction of the movement, is
especially useful when the target is not visible (e.g., in
memory experiments). For example, we have tested the
reader’s ability to locate with the mouse the position of
a target word in previously read text. The direction of the
movement is influenced by perceptual as well as lin-
guistic factors of the text (Baccino & Pynte, 1994).

Angle function. First we find the slopes of each side
of the triangle STC (starting point, target point, and
clicking point). Given the endpoints of each side, the
slope (Slope function) is easily calculated by the equation

m =b, —bx/ay -a,.

Then, the angle between two lines (Anglnter function) is
given from their slopes (71 and m) by using the equation

m —m
tan0:¥,
1+m1m2



SPATTAL PROCESSING WITH A MOUSE 81

MICELAB Test
Area (Pix/Square) = 6315.800
Distance (Pixels) = 363.724
Time 1 Time 2 Angle {(Degrees) = 9.320
Target Target Target
o c
s = =

Figure 6. Schematic diagram of the MouseTst program, illustrating a mouse-pointing task with the spatial analysis of the
movement. Time 1, mouse cursor (in S) must be moved up to the target; Time 2, typical mouse movement (from s to ¢ click-
ing point); Time 3, data analysis and final results on spatial variables.

and obviously the angle is equal to the arc tangent of
(using the ArcTan built-in function). The angle initially
calculated in radians is given in degrees by the follow-
ing transformation (RadDeg function):

AngleDegree = (AngleRadian [1180.0)/Pi .

The FindSign procedure has been given in order to check
the sign of every angle of the triangle STC. Angles of the
same triangle must have the same sign, and their sum
must equal 180°. If one angle out of three has a different
sign, it must be subtracted from 180° if it is positive, or
added to 180° if it is negative.

Mouse Unit

This unit (MouseU.pas) provides a set of procedures
by which the mouse records buttonpresses, mouse move-
ment, and mouse cursor locations similar to those pre-
viously described by Crosbie (1990). These routines
are available in programming the Interrupt 33H. Initial-
ization sets the mouse driver, and Hide_Curs and
Show_Curs manipulate the cursor display. Cursor po-
sition is defined by Def_ Position and returned by
Ret_Position. Horiz_Bound and Vert_Bound for x,y
axes, respectively, define the boundaries of the cursor
movement on the screen. Since a graphics mouse has

been used in this program, positions or boundaries are
given in pixels.

MouseTst Program

The program MOUSETST.PAS uses elements of both
of the algorithms described above to measure trajectory
dispersion, trajectory distance, and pointing accuracy of
the mouse movement. Init_Ecr_Graph_Auto is called to
automatically set the graphics screen. The program dis-
plays a target (X) at a random position on the screen, and
the task consists of moving the mouse cursor to the
target. After the left button of the mouse has been
pressed, the analysis of the pointing movement is given.
MOUSETST.PAS is a very simple program, but it illus-
trates how the MICELAB unit can be used (see Figure 6).

Availability

The complete units (including source code) and an ex-
ecutable version of the demonstration program may be
obtained from the first author by sending a self-ad-
dressed mailer and formatted floppy disk (any format).

REFERENCES

Baccino, T. (1991). Spatial coding and text reading on VDU display.
Unpublished doctoral dissertation, University of Provence, Aix-en-
Provence, France.



82 BACCINO AND KENNEDY

Baccivo, T. (1994). Mouse movement control and spatial coding.
L’Année Psychologique, 94, 11-24.

Baccino, T., & PYNTE, J. (1994). Spatial coding and discourse models
during text reading. Language & Cognitive Processes, 9, 143-
155.

Baccino, T., PYNTE, J., & KENNEDY, A. (1990). Spatial coding of word
position in text during mouse operations. Paper presented at the
Fourth European Cognitive Psychology Conference, Como, Italy.

BERINGER, J. (1992). Timing accuracy of mouse response registration
on the IBM microcomputer family. Behavior Research Methods,
Instruments, & Computers, 24, 486-490.

CROSBIE, J. (1990). The Microsoft Mouse as a multipurpose response
device for the IBM PC/XT/AT. Behavior Research Methods, In-
struments, & Computers, 22, 305-316.

KENNEDY, A., & BacciNo, T. (1993). The effects of screen refresh rate
on editing operations using a computer mouse pointing device.
Paper presented at the Seventh European Conference on Eye Move-
ments, Durham, England.

SEGALOWITZ, S.J., & GRAVES, R. E. (1990). Suitability of the IBM XT,
AT, and PS/2 keyboard, mouse, and game port as response devices
in reaction time paradigms. Behavior Research Methods, Instru-
ments, & Computers, 22, 283-289.

(Manuscript received August 30, 1993;
revision accepted for publication February 11, 1994.)



