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ABSTRACT
This paper proposes an automatic method for predicting
the inter-observer visual congruency (IOVC). The IOVC re-
flects the congruence or the variability among different sub-
jects looking at the same image. Predicting this congru-
ence is of interest for image processing applications where
the visual perception of a picture matters such as website
design, advertisement, etc. This paper makes several new
contributions. First, a computational model of the IOVC is
proposed. This new model is a mixture of low-level visual
features extracted from the input picture and model’s pa-
rameters are learned by using a large eye-tracking database.
Once the parameters haves been learned, it can be used for
any new picture. Second, regarding low-level visual feature
extraction, we propose a new scheme to compute the depth
of field of a picture. Finally, once the training and the fea-
ture extraction have been carried out, a score ranging from
0 (minimal congruency) to 1 (maximal congruency) is com-
puted. A value of 1 indicates that observers would focus on
the same locations and suggests that the picture presents
strong locations of interest. A second database of eye move-
ments is used to assess the performance of the proposed
model. We also show that the proposed method outperforms
an existing method. Results show that our IOVC criterion
outperforms the Feature Congestion measure [32]. To illus-
trate the interest of the proposed model, we have used it to
rank personalized photograph in an automatic manner.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experimentation, Human Factors
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1. INTRODUCTION
Idiosyncrasy is defined as an individualizing quality or

characteristic of a person or group, and is often used to ex-
press peculiarity (from Wikipedia). Therefore idiosyncratic
eye movements refer to as the difference between the visual
scanpaths of observers viewing the same stimulus. More
precisely, these differences concern the intrinsic features of
visual fixations. For instance, there is a strong variability of
fixation durations between and within observers as shown by
[30]. In this paper, we define inter-observer visual congru-
ency (IOVC) and we propose a new method to automatically
compute it.

The causes explaining the visual dispersion are usually
classified into either stimulus-dependent (or bottom-up) or
observer-dependent features (or top down).

A first observer-dependent cause is the cultural difference
as suggested by [26, 5]. These authors compared the visual
scan pattern of two different populations, an American and
an Asian one. The conclusion was Asian people tend to
look more at the background and spend relatively less time
on focal objects than American people. However, a recent
study casts doubt on the influence of cultural differences on
oculomotor behavior [31].

A second observer-dependent factor of variability is due to
our prior knowledge or our prior experience as illustrated by
[1]. They showed that the variability differs when observers
looked at famous versus non-famous faces. Famous faces
tend to decrease the dispersion of visual fixations just after
the stimulus onset. The visual scanning is then affected
by higher level information such as the eye-movement-based
memory effect.

On the opposite, stimulus-dependent features influencing
the dispersion between observers is related to the properties
of the stimuli itself. For instance, Rousselet et al. [35] shows
that human faces as well as animals attract our attention
leading to a decrease of inter-observer variability. Contrary
to the two previous factors that are observer-dependent, the
properties of the stimuli and their characteristics can be eas-
ily extracted and analyzed automatically from the picture.

It is also important to note that the difference between
observers’ scanpath is time-dependent [28, 37]. They in-
deed showed that the consistency in fixation locations be-
tween observers decreases with prolonged viewing. To ex-
plain that, two hypothesis have been formulated: [28] shows



that the influence of bottom-up mechanisms decreases with
the viewing time and is progressively overridden after sev-
eral seconds of viewing by top-down mechanisms. On the
contrary [37] conjectures that bottom-up mechanisms are
not time-dependent and that low-level visual features might
keep their ability to attract our visual attention throughout
the viewing. They [37] therefore explained that the increase
of inter-observer variability would be due to the growing in-
fluence of top-down mechanisms over time. Even if both
papers propose different explanations, they all agree on the
time dependency of IOVC and on the fact that bottom-up
(or stimulus-dependent) mechanisms occur first.
In this study, we predict the inter-observer visual congru-

ency that occurs in the first seconds of a picture observation.
From a given picture, a score indicating the degree of visual
congruence is computed. The computational model we pro-
pose, combines stimulus-dependent features which are solely
inferred from the low-level visual features of the incoming
picture. We train the model by using a large eye-tracking
database. In this database, we consider the first eye move-
ments tracked in the first seconds of a picture observation.
Observer-dependent features such as prior knowledge are not
taken into account since they may vary from one observer
to another. In order to get a general model that can ap-
ply to any picture, we propose a stimulus-dependent model.
Therefore, our method predicts the dispersion based on the
influence of stimulus characteristics, rather than individual
observer characteristics.
There is almost no study dealing with the computational

modeling of the inter-observer visual congruency. The clos-
est method work concerns a method to measure visual clut-
ter. Note that IOVC and visual clutter defers since the for-
mer is the dispersion that exists between locations focused
by observers whereas the latter is related to the amount
of visual information in a scene. However both might be
strongly correlated. The most popular method to measure
the visual clutter has been proposed by Rosenholtz et al.
[32]. The idea is to measure the visual clutter of a scene
in order to avoid confusion and to speed up the visual pro-
cessing of information. For instance, a possible application
is to help people to find important information on a web
site or simply on a screen. Rosenholtz et al.’s solution is
based on a set of low-level visual features. Some of them
will be reused in this study. Rosenholtz et al. assessed the
performance of their algorithm by comparing the amount
of clutter for a scene to the reaction time required to find a
target in the same scene. In this paper as in [32], we use low-
level visual features. However, our approach differs from [32]
since the goal is different and since we not only use low-level
visual features but also eye tracking measurements. More
precisely, we use the visual scanpaths of observers in order
to train a model. Our approach is supported by a num-
ber of studies suggesting that the degree of clutter present
in the scene affects the deployment of our visual attention
[17]. For instance, Ehinger et al. [9] measured the disper-
sion between observers to define an upper bound of model-
predicted saliency. Eye movements were collected when 14
observers performed a task of pedestrian detection in 912
outdoor scenes. The dispersion between observers was com-
puted by a one-against-all method as proposed by [41]. The
same approach will be used in this paper to compute our
ground truth. However, the comparison between Ehinger et
al. [9] stops there because Ehinger et al. proposed a com-

putational model to predict where observers look at, while
searching for pedestrians. To infer the salient locations in
this visual search context, they combined different guidance
sources such as low-level saliency (by using Torralba’s model
[41]), target features (by using a person detector) and scene
context. In our method, we do not predict where people look
at. We predict the dispersion between observers indicating
whether observers look at similar locations or not. Ehinger
et al. used the dispersion between observers as an an upper
bound for comparing performance of computational mod-
els with human fixations. As stated by [46], no saliency
prediction can perform better than the dispersion between
observers.

Eye movements are also often used to examine the us-
ability of an interface. Golberg and Kotval [13] defined a
number of metrics based on the analysis of fixation dura-
tions and saccade amplitudes. Cowen et al. [8] featured
the efficiency of a visual search by examining the fixation
distributions. Fixations concentrated in a small area indi-
cate focused and efficient searching whereas sparse fixations
would indicate lower search efficiency.

In this paper, we present a computational model of inter-
observer visual congruency (IOVC). From a training set com-
posed of eye tracking data, we build a prediction model by
using a supervised approach. Our goal aims to give a score
to a given picture that indicates whether the visual strategy
of human observers is similar or not. From the eye track-
ing data, we set up a ground truth by computing for each
picture the inter-observer congruency. By using a limited
number of low-level visual features, a model is trained and
is able to predict efficiently and automatically the dispersion
between observers. This predicted score can be used in ap-
plications where the visual perception of a picture matters
such as website design, advertisement. Indeed, it can help to
rank images based on their capacity to attract our attention
or help to measure the relevance of web design.

The paper is composed as follows. Section II gives an
overview of the proposed approach. Section III describes
how the IOVC is measured. A large database of eye tracking
data is used for this purpose. Section IV is related to the
extraction of visual features that are supposed to influence
the attentional allocation. Section V concerns the learning
and its performance. Section VI presents an application for
ranking personalized pictures based on their interestingness.
Finally, we conclude the paper.

In summary, our contributions include:

• a solution for predicting the inter-observer congruency.
We use an eye tracking database to train a computa-
tional model;

• a novel scheme to estimate the depth of field for a scene
is proposed which is simpler than existing methods;

• a new method to rank automatically personalized pho-
tographs. The ranking is based on pictures’ interest-
ingness.

2. SYSTEM OVERVIEW
Figure 1 illustrates the proposed approach. First, an im-

age database with its corresponding eye tracking data is set
up. The feature extraction step extracts different visual at-
tributes for each picture of the training dataset. After the
feature extraction, the training set along with eye tracking
data is used to train a cluster-weighted model. The trained



Figure 1: System overview.

model is then used to predict the inter-observer congruency
of a picture taken from a new data set.
Once the estimation of model’s parameters has been per-

formed, personalized photograph can be ranked according
to their interestingness. The interestingness of an image is
related to its ability to attract and to hold our attention.
The interestingness of a picture is thus similar to the inter-
observer congruency.

3. MEASURING THE INTER-OBSERVER CON-
GRUENCY

3.1 Eye-tracking database
Judd et al.’s database [20] is used in this study. Let us first

review the experimental protocol and the characteristics of
this dataset. The database is composed of 1003 images of
various contents. Images had different resolutions and were
in a landscape or portrait orientation. Fifteen viewers were
involved in the eye tracking tests. The users were males and
females between the ages of 18 and 35. Two of the viewers
were researchers and the others were naive viewers. They
viewed each image for 3 seconds in a free-viewing task. Par-
ticipants sat at a distance of approximately two feet from a
19 inch computer screen of resolution 1280× 1024. The im-
ages subtended approximately 45 horizontally and 37 verti-
cally of the observer’s field of view. The number of pixel per
degree is then about 23. This database can be downloaded
from http://people.csail.mit.edu/tjudd/index.html.

3.2 Inter-observer congruency
To assess the inter-observer congruency, a one-against-all

approach (also called leave one out) is used as in [41]. The
first step consists in computing a 2D fixation distribution
from the fixation data of all observers except one for a given
picture. The fixation distributions were then convolved with
a two-dimensional Gaussian. Each pixel of this map repre-
sents the probability to be fixated. The standard deviation
of the Gaussian kernel is set at one degree to reflect esti-
mates of foveal size. This map is then thresholded to select
an image area having the highest probability of being fix-
ated. The threshold is adaptively set in order to keep 25%
of the image. The goal is now to compute the percentage of
the visual fixations of the remaining observer that fall within

Figure 2: Measure of the inter-observer congruency.
On the left, the spatial coordinates of visual fixations
for each observer are given. By considering all fix-
ations except those stemming from the ith observer,
a heat map is computed (on the right). After an
adaptive binarization, we count the number of fixa-
tions of the ith observer that fall into salient regions
(white region on the bottom).

salient parts of the threshold saliency map. This process was
iterated for all observers. For a given picture, the variabil-
ity between observers is the average of the aforementioned
percentage over all subjects. As most of the dispersion val-
ues are in the range of 0.5 to 1, the scale has been stretch
from 0 to 1. A value of 1 indicates that observers fixate the
same areas. Conversely, a low value would suggest that the
scan patterns are uncorrelated meaning a strong variability
between subjects. Figure 2 illustrates the method for the ith

observer.
Over the whole dataset, the average dispersion is of 72%,

the median dispersion is of 76%. Figure 3 shows the dis-
tribution of the inter-observer congruency over the whole
dataset. It is interesting to notice that, for a number of pic-
tures, the congruency is maximal. This is due to the fact
that a fixation point is defined by its spatial coordinates
and by its neighborhood, representing one degree of visual
angle (representing fovea’s size). Figure 4 shows for differ-
ent pictures the experimental congruency between observers.
Results suggest that the congruency is small when there is
nothing in the scene that catches our attention. In this con-
text, areas that stand out the background are rare and the
scene consistency is strong. As expected, the presence of hu-
man faces tends to increase the inter-observer congruency.
It is indeed known that human faces attract in an effortlessly
manner our attention.

4. EXTRACTION OF VISUAL ATTRIBUTES
IMPACTING THE INTER-OBSERVER VARI-
ABILITY

In this section, the visual features used to predict the
inter-observer congruency are presented.

4.1 Face detection
As the human faces significantly impact our visual deploy-

ment, it is of importance to detect human faces. The face
detector we use is the one proposed by OpenCV library. The
face detector is based on Haar feature-based cascade classi-
fier for object detection. This kind of detection has been
initially proposed by [43] and improved by [22].

4.2 Color Harmony



Figure 3: Distribution of the inter-observer congru-
ency over Judd et al.’s dataset [20].

Several studies showed that scene incongruency or incon-
sistency are factors influencing the inspection of an image
[23, 14, 42]. Among the scene inconsistency factors (ob-
jects, size, etc), the color might be an important factor. For
instance, Frey et al. [11] showed that overt attention is sig-
nificantly influenced by the presence of color. The basic
assumption was that the color presence might systemati-
cally increase the congruency. The conclusion of [11] is not
so straightforward. Indeed, the influence of the color might
depend on the picture’s category.
In this study, the color inconsistency refers to the color

harmony of the scene. We speculate that a scene with a
strong consistent color harmony would be less visually dis-
ruptive than a scene with a poor color harmony. To measure
the color harmony, we propose to follow the process of [6].
In [6], the notion of color harmony is based on the work of

Matsuda [25, 38]. Figure 5 illustrates the height harmonic
templates on the hue wheel. These templates, that may be
rotated by an arbitratry angle, can be used to measure how
aesthetically pleasing an image is.
The color harmony of an input color picture I, called

CH(I) is computed by equation 1. We use similar nota-
tions as [6]. They are briefly reminded below:

CH(I) = min
m

F (I, (m,α
∗)) (1)

where, m ∈ {i, I, L, T, V,X, Y }. The function F is defined
as follows:

F (I, (m,α
∗)) =

∑

i∈I

∥∥H(i)− ETm(α∗)(i)
∥∥× S(i) (2)

where H and S denote the hue and the saturation channels,
respectively. The hue distance ‖.‖ refers to the arc-length
distance on the hue wheel (measured in radians). Hues that
are enclosed in the sector of Tm are considered to have zero
distance from the template. α∗ defines the orientation of the
template Tm that minimizes the distance F . As in [6], we
use Brent’s algorithm [29] to find the best orientation α∗.
This kind of algorithm seeks a local minimum of a function
in a given interval. ETm(α∗)(i) is the sector border hue of
template Tm with orientation α∗ that is the closest to the
hue of pixel i. Figure 6 gives an example of two pictures
extracted from [6]: one is the original whereas the second
presents an optimized color harmony. The value F is given

Figure 4: Examples of pictures associated with their
corresponding inter-observer congruency. The vari-
ability is in the range of 0 (strongest variability) to
1 (no variability).

for each template.

4.3 Depth of Field
The Depth of Field (DoF) is defined as the distance be-

tween the nearest and farthest objects in a scene that appear
acceptably sharp in an image. A shallow DoF is often used
to emphasize the region of interest in a picture. It is for
instance used for portraiture photography. All background
details are blurred whereas the nearest person (or object)
is sharp, attracting our attention. An example is given fig-
ure 7 (a). When a large DoF is used, the opposite effect is
achieved. The entire picture is sharp so that all the details
of the scene are preserved. Picture of figure 7 (c) was taken
with a large DoF.

Estimating the DoF is then of importance. As photog-
raphers can steer our visual attention towards a particular
areas by controlling the DoF, the inter-observer variability
might be contingent upon this artistic effect.



(a) Original (b) DoF=0.12 (c) Original (d) DoF=0.75

Figure 7: (a) and (c) two original pictures. (b) and (d) indicates areas sensitive to blur in dark. The brigth
areas correspond to unfocuss areas. DoF, standing for Depth of Field, indicates whether the picture is
sensitive to blur (deep DoF) or not (shallow DoF).

Figure 5: The seven color templates defined by [25]
on the hue wheel. The templates may be rotated by
an arbitrary angle (extracted from [6]). The tem-
plate N is used for gray-scale images.

To determine the depth of field, the proposed algorithm
relies on the fact that the shape of the horizontal/vertical
derivatives histogram is modified after a blurring operation
[21, 24]. The proposed scheme to compute the DoF of a
picture is described below.
Let I the input picture and fk the bluring kernel of size

k × k (k = {3, 5, 7}). The blurring kernels are first applied
on the luminance L of I and the vertical and horizontal
derivatives are then computed. The vertical and horizontal
derivatives are given by:

pxk α hist(I ∗ fk ∗ dx) (3)

pyk α hist(I ∗ fk ∗ dy) (4)

where dx = [1 − 1] and dy = [1 − 1]T .
For a pixel (i, j) and for a kernel k, we compute the KL-
divergence between the distributions pxk and pyk and the
original distributions px1 and py1:

Dk(i, j) =
∑

(n,m)∈Wij

KL(pxk|px1)(n,m)+KL(pyk|py1)(n,m)

(5)
where, Wij is a window centered on the pixel (i, j). In this
study, all the experiments were performed using uniform
kernels.
The KL-divergence for a given pixel located at (i, j) is

Figure 6: Original (top) and harmonized (bottom)
picture extracted from [6]. On the right-hand side,
the value F (I, (m,α∗)) for each template m is given.
The red value is the lowest one, called here CH(I).
The harmonized picture presents a lower CH value
than the original one.

given by the following formula:

KL(p|q)(i, j) = pij log(
pij

qij
) (6)

The KL-divergence involves two probability density func-
tions p and q. They both sum to 1. The KL-divergence is
only defined when pij and qij are greater than zero. The
quantity 0log0 is considered as zero.

The use of the KL-divergence is especially interesting in
the equation 7 because of its similarity with the DoF val-
ues. Indeed, Dk tends to zero when the distributions pxk
and pyk are close to px1 and py1, respectively. In this case,
it means that the incoming picture is not sensitive to blur
indicating that the picture is already blurred. The DoF is



then low. When the value Dk increases, it suggests that the
areas under analyis is rather sharp (DoF is probably high).
The DoF value is finally computed as follows:

DoF =
∑

(i,j)∈I

∑

k

Dk(i, j) (7)

Figure 7 (b) and (d) give the value of DoF for two exam-
ples. For the first one, the DoF is of 0.12 suggesting that the
picture is composed of large blurred areas. As the DoF is
greater than zero the picture probably presents a sharp ar-
eas, sensitive to a blurring operation. For the second picture,
the DoF is of 0.75. Unlike the previous one, this picture is
more sensitive to blurring operations, suggesting that most
of the pictures are sharp. Figure 7 (b) and (d) illustrate in
bright areas regions that are sensitive to blur. For the sake
of visibility, the two pictures have been normalized in the
range of 0 to 255 by using their own global maximum (3.56
and 4.68, respectively). This kind of map might be used to
extract the region of interest when the DoF value is rather
low, as proposed by [24].

4.4 Scene complexity
The amount of visual information as well as the visual

clutter in a picture might contribute to explain the ob-
servers’ variability [32]. Oliva et al. in [27] determined a
list of factors that correlates with our representation of the
visual complexity of a scene. Among them, the most impor-
tant would be the quantity and the variety of objects, detail
and color. To assess the visual complexity, three computa-
tional measures are used: the entropy, the number of regions
and the amount of contours.

4.4.1 Entropy-based scene complexity
To compute the entropy of the incoming picture I, we

follow a similar approach of the one described in [32]. The
complexity of the scene is the sum of the entropies of wavelet
subbands. The procedure is described below:

1. The input picture is first converted into the Lab color
space;

2. Each component is transformed by using a 2D dyadic
wavelet transform. The level number is set to 2;

3. A non parametric method is used to compute the prob-
ability distribution of wavelet coefficients. The entropy
for each subband is computed as E = −∑

i pilog(pi),
where, pi is the probability distribution of wavelet co-
efficients for a given subband.

4. We sum the subband entropies for each component
{L, a, b};

5. The final complexity C is obtained by using the pooling
of [32]: C = 0.84×EL + 0.08×Ea + 0.08×Eb, where
EL, Ea and Eb represent the entropy of the component
L, a and b, respectively.

Figure 8 gives two complexity values C for two pic-
tures.

4.4.2 Color mean shift segmentation
The color mean-shift segmentation has been proposed by

[7]. Based on a bilateral filtering, the color mean-shift seg-
mentation associates each pixel of the incoming picture with

a significant mode of the joint domain density located in the
neighborhood of the considered pixel. The software designed
by [4] and available at http://coewww.rutgers.edu/riul/
research/code/EDISON/index.html is used to perform the
segmentation.

The sizes of the filtering kernel (hs, hr) (by using the no-
tations of [7]) are both set to 5. M is the minimum number
of pixels enclosed by a region (equal to 1 percent of the input
resolution).

Figure 8 shows two segmented pictures ((b) and (d)). The
number of regions of the segmented picture is also given.
This value is used to feature the visual complexity of the
scene.

4.4.3 Amount of contours
Edges play an important role in our perception. For in-

stance, Baddeley and Tatler [2] showed that edges correlate
with fixation location in real-world scenes better than lumi-
nance contrast.

To measure the amount of contours in an image, Sobel
edge detectors are used to detect horizontal, vertical and
diagonal edges. The kernel has a size of 3 × 3. These ker-
nels are applied on each level of a Gaussian pyramid. The
number of levels is equal to 3. For each level, we compute
the average energy of the Sobel detectors (by averaging over
the level the squared output of Sobel filter). This process
is performed for each level of the pyramid and for the three
components {L, a, b}. For a given component, we combine
the energy across scale by taking the average. Finally, to
get a single measure, the average energy value is computed
across the three components.

5. LEARNING: DESCRIPTION AND PER-
FORMANCE

5.1 Learning
Each image is then represented by a features vector, hav-

ing a dimension of 6. The dimensionality of the features
vector is not reduced as the number of dimension is low.

The estimation of the inter-observer congruency is equiv-
alent to the estimation of the joint probability density func-
tion p(IOV C,v). The random variable IOV C represents
the inter-observer visual congruency whereas v is the fea-
ture vector containing the six indicators. To infer the re-
lationship between these two random variables, a learning
algorithm is used. We follow the same procedure described
in [39, 33] and use software kindly provided by [33]. We just
remind the main aspects of this learning procedure.

The learning consists in estimating the relationship be-
tween a measure of congruency and the extracted visual fea-
tures described in the previous section. A cluster-weighted
model (CWM) initially proposed by [12] is used. This is
a generalization of Gaussian mixture, in which each Gaus-
sian function expressed a part of the relationship between
the input and the output distributions. The joint PDF
p(IOV C,v) is given by:

pθ(IOV C,v) =
N∑

i=1

p(ci)p(v|ci)p(IOV C|v, ci) (8)

where IOV C is the inter-observer congruency and v refers
to the image features. N is the number of clusters. Each
cluster is decomposed in three factors:



(a) Original (b) Segmented
(C=14.67dit/pel;Reg=103)

(c) Original (d) Segmented
(C=14.72dit/pel;Reg=72)

Figure 8: (a) and (c) two original pictures. (b) and (d) are the segmented pictures. C and Reg stand for the
complexity measure and the number of regions, respectively.

• p(ci) is the weight of the cluster ci;

• p(v|ci) is a multivariate Gaussian with mean µi and
covariance matrix

∑
i:

p(v|ci) =
exp

[
− 1

2
(v − µi)

T (
∑

i)
−1(v − µi)

]

(2π)L/2
∣∣∑

i

∣∣1/2
(9)

• p(IOV C|v, ci) is the probability of the inter-observer
congruency IOV C given the input data in the cluster
i:

p(IOV C|v, ci) =
exp

[
− 1

2
(IOV C − wT

i v
∗)2

]
√
2πσi

(10)

This is a Gaussian function with a variance equal to σ2
i

and a mean dependent on the input feature v∗ (same
as v with a value 1 concatenated to its end) and a
weight vector wi. This vector indicates the weight of
each input data.

Parameters of the model θ, (p(ci), µi,
∑

i, σ
2
i , wi, with i =

1...N) are estimated using the Expectation-Maximization
algorithm [18].
As explained in [15], in data-rich situation, it would be

possible to split the data into three parts (a training set, a
validation set and a test set). As this is not the case here
(1000 pictures), we use the Bayesian Information Criterion
(BIC) to define the model complexity. The BIC is given by:

BIC = −2× loglik + d× logS (11)

where d is the number of free parameters depending on the
number of clusters, S is the size of the dataset and loglik is
the maximized log-likelihood:

loglik =
S∑

n=1

log pθ̂(IOV C,v) (12)

where pθ̂(IOV C,v) is defined in equation 10. θ̂ are the
estimated parameters of the model.
Figure 9 presents the BIC values in function of N (the

number of clusters). N = 9 is a good trade-off between
complexity and quality of prediction. This value allows to
predict quite efficiently the inter-observer congruency with-
out over fitting the training data. Indeed, over fitting the
data would lead to an almost perfect prediction but the risk

is to loss the generalization property. As mentioned by [10],
it is important to accept error to make less error. By using
N = 9, we respect this first point. Concerning the quality
of prediction, the ground truth and the predicted values of
IOV C are correlated r(2004) = .34, p < .001 (Pearson coef-
ficient) and r(2004) = .28, p < .001 (Spearman coefficient).

Figure 9: BIC in function of the model complex-
ity. Several trials have been performed (light red
curves). The dark red curve gives the median BIC
values.

Remark: during the learning phase, we didn’t use the
face detector in order to limit the impact of false alarms
on the estimated parameters. Instead, hand-label data are
used indicating for each picture of the dataset the number
of faces present.

5.2 Performance
A qualitative and quantitative evaluation of the proposed

approach has been performed. Figure 11 presents some qual-
itative results. Figure 11 (a) gives five pictures having a high
IOVC whereas figure 11 (b) illustrates five pictures with a
small IOVC. These results are relevant with our own subjec-
tive ranking. Indeed, pictures of figure 11 (a) are much more
interestingness than those of figure 11 (b). In other words, it
would be difficult to predict where an observer would focus
on this kind of pictures.

A quantitative evaluation is also performed by using an-



other eye tracking database. This database is composed
of 27 pictures and can be downloaded from http://www.

irisa.fr/temics/staff/lemeur/visualAttention/. We com-
pute the Pearson correlation coefficient between IOVC stem-
ming from this new ground truth and our prediction. Both
are correlated r(54) = .27, p < .17. The correlation is
not significant due to the small number of pictures in this
database. In addition, the face detector fails to detect the
human faces on 5 pictures due to the varying face poses.
This lack of accuracy in the detection lowers the correlation
coefficient.
The proposed method is compared to the Feature Conges-

tion measure of Rosenholtz et al. [32]. This measure aims
to evaluate the visual clutter of a scene. The software avail-
able on Rosenholtz’s web page is used. We run the Feature
Congestion measure on the aforementioned dataset. The
correlation coefficient between the Feature Congestion mea-
sure and IOVC of this dataset is r(54) = −0.15, p < .43.
The correlation is negative since a high visual clutter might
be interpreted as a weak congruency.

5.3 Limitations
The proposed model is relevant in order to predict the

dispersion of observers only in free-viewing task. In the in-
troduction, we have dressed a list of factors influencing the
dispersion between observers. One factor that was not men-
tion is the task to perform. For instance, if we measure the
inter-observer congruency when the task is to detect pedes-
trians, the inter-observer congruency is very high, indicating
that observers share the same strategy to perform the task.
To illustrate this point, we compute the inter-observer con-
gruency over the whole eye tracking database of Ehinger [9]
(some details are given in the introduction). The average
dispersion is of 82%, the median dispersion is of 88%. Com-
pared to the dispersion measured on Judd’s database, there
is a significant difference (unpaired t-test,F (1, 1356) = 8.28,
p < .001).
Another limitation concerns the influence of the viewing

time on the dispersion. It has been shown that the dispersion
is time-dependent and increases with the time viewing. This
feature is here not taken into account. For the targeted
application, this feature was not judged as fundamental.
The last limitation concerns the limited accuracy of the

detector we use. More specifically, as the presence of face
plays an important role, the face detector has to be as effi-
cient as possible.

6. IMAGE RANKING BASED ON INTER-
ESTINGNESS

The interestingness of an image is related to its ability
to attract and to hold our attention. For instance, to give
a score of interestingness, Flickr (http://www.flickr.com)
uses a combination of several parameters such as comments,
annotations, favorites, etc. This is an excellent indicator but
it requires a feedback or an effort of the users. An indicator
based on the content analysis, such as the proposed method,
might help evaluating the immediate interest of an image.
The proposed method can then be used in a context of

photos browsing and automatic photograph organization.
As in [34, 44, 24, 36, 45], we propose to organize a large set of
photograph. However the proposed ranking is based on the
picture interestingness. This is different from state-of-the-

art methods. For instance, Luo and Tang [24] proposed to
rank images according to their quality. This score is based
on composition, lighting, focus controlling and color. Al-
though there are some similarities among the extracted fea-
tures (such as the DoF), better photo quality does not mean
more relevant or interestingness, as mentioned in [24]. For
instance, Judd et al. [19] show that the dispersion between
observers depends on image complexity and that fixations
from lower-resolution images (low quality) can predict fixa-
tions on higher-resolution images (high quality).

To illustrate the proposed method, we propose to sort
forty nine images. We run the proposed model on these
pictures in order to estimate their interestingness. Figure
10 illustrates the results by showing the pictures ranked ac-
cording to their interestingness. The first picture (top-left)
has the most important IOVC whereas the picture having
the lowest IOVC appears at bottom-right. On the last pic-
tures, we can notice that there is nothing that stands out
the background. In other words, it would be very difficult
to predict for this kind of picture where an observer would
focus on.

7. CONCLUSION
In this paper we proposed a new criterion to automati-

cally estimate the visual congruence between observers. We
have evaluated our method qualitatively and quantitatively.
We showed that our IOVC criteria outperforms the Feature
Congestion measure of [32] since the absolute value of the
correlation between the ground truth IOVC and our crite-
rion is larger that with the Feature Congestion measure of
[32]. The predicted IOVC can be used in image processing
applications where the visual perception of a picture mat-
ters such as website design, advertisement. For instance, we
considered ranking personalized photograph: pictures are
sorted out in function of their predicted IOVC.

However, the proposed method is still an approximation
of the ‘true’ IOVC. It can best estimate short-term IOVC,
that is the IOVC experienced in the first instant of a picture
observation. In order to improve this method, it would be
necessary to consider both higher level factors such as those
proposed by [40] and higher level cognitive factors like the
scene coherence [16]. Taking into account these factors is
difficult because of their complexity.

In future work it is planned to build a new eye tracking
database in order to improve the training and the perfor-
mance assessment. The influence of higher level informa-
tion such as the type of the scene (indoor, outdoor...) will
also be examined. Last but not the least, we will consider
more IOVC-based applications. One of them is related to
photo-quality assessment as presented in [3, 24]. The use
of the predicted IOVC might be combined with other image
ranking work.
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